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Nonlinear analyses of heart rate variability (HRV) can be used to quantify the

unpredictability, fractal properties and complexity of heart rate. Fractality and its

analysis provides valuable information about cardiovascular health. Multi-Scale

Multi-Fractal Detrended Fluctuation Analysis (MSMFDFA) is a complexity-based

algorithm that can be used to quantify the multi-fractal dynamics of the HRV

time series through investigating characteristic exponents at different time

scales. This method is applicable to short time series and it is robust to

noise and nonstationarity. We have used MSMFDFA, which enables

assessment of HRV in the frequency ranges encompassing the very-low

frequency and ultra-low frequency bands, to jointly assess multi-scale and

multi-fractal dynamics of HRV signals obtained from telemetric ECG recordings

in wildtype mice at baseline and after autonomic nervous system (ANS)

blockade, from electrograms recorded from isolated atrial preparations and

from spontaneous action potential recordings in isolated sinoatrial node

myocytes. Data demonstrate that the fractal profile of the intrinsic heart rate

is significantly different from the baseline heart rate in vivo, and it is also altered

after ANS blockade at specific scales and fractal order domains. For beating rate

in isolated atrial preparations and intrinsic heart rate in vivo, the average fractal

structure of the HRV increased and multi-fractality strength decreased. These

data demonstrate that fractal properties of theHRV depend on both ANS activity

and intrinsic sinoatrial node function and that assessing multi-fractality at

different time scales is an effective approach for HRV assessment.
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Introduction

Heart rate (HR), a critical measure of cardiac performance, is

determined by the intrinsic properties of the sinoatrial node

(SAN) and modulated by the autonomic nervous system (ANS)

(Mangoni and Nargeot, 2008; Lakatta et al., 2010; Macdonald

et al., 2020). Specifically, intrinsic HR is determined by the rate of

spontaneous action potential (AP) firing in SAN myocytes while

the sympathetic (SNS) and parasympathetic (PNS) nervous

systems increase and decrease SAN AP firing, respectively.

Heart rate variability (HRV), which describes the beat-to-beat

variation in HR (i.e. variation in the R-R interval on the

electrocardiogram), is understood to be robust in a healthy

cardiovascular system (Billman, 2011; Yaniv et al., 2014; Yaniv

et al., 2016). Consistent with this concept, reductions in HRV are

associated with worse prognosis in a number of conditions and

disease states (Hillebrand et al., 2013). HRV is recognized to arise

from changes in the activity of the ANS (i.e. changes in

sympatho-vagal balance) as well as alterations in the intrinsic

properties of the SAN (i.e. changes in intrinsic HR)

(Papaioannou et al., 2013; Yaniv et al., 2014; Behar et al.,

2018; Dorey et al., 2020; Rosenberg et al., 2020). HRV is

conventionally assessed through spectral and/or time domain

analyses, which are well-established approaches that provide

important insight into the roles of the autonomic nervous

system (ANS) and intrinsic sinoatrial node (SAN) function in

HRV (Billman, 2011; Shaffer and Ginsberg, 2017; Moen et al.,

2019). HRV can also be assessed using a number of nonlinear

approaches such as sample entropy (Richman and Moorman,

2000), Poincaré plots with analysis of standard deviations (Guzik

et al., 2007), long range RR interval turbulence (Lombardi and

Stein, 2011) and heart rate fragmentation (Costa et al., 2017).

While each of the above traditional and nonlinear

approaches can provide important information on HRV in

different conditions, it is important to recognize that the

dynamic cardiovascular system is embedded in a highly

complex fractal structure of interacting sub-systems such as

fractal vascular and neural networks, humoral pathways and

the SAN itself. This dissipative system is therefore best described

as one that exists in a dynamic self-organized state, with

nonlinear and fractal characteristics, that can preserve

homeostasis (Dini et al., 2012; Castiglioni et al., 2018). HR

and HRV represent complex signals within the cardiovascular

system that provide important information on this process. The

natural variability in HR is not characterized by any particular

time scale meaning that HR, like other physiological signals, is

fractal with numerous nonlinear features that are not quantifiable

by traditional spectral analysis (Ivanov et al., 1999). As a result,

kinetic fractals of the RR interval can be indicative of their self-

similarity or their long-range correlation within RR interval time

series. Accordingly, analysis of the fractal nature of HRV requires

the use of distinct algorithms that facilitate the study of nonlinear

parameters that describe this complex regulation of heart rate as

not all information contained in the HRV signal is captured by

more traditional methods (Sassi et al., 2015). Reliable

identification and validation of the fractal components of

HRV can reveal alterations in cardiovascular regulatory

mechanisms that could provide accurate insight into the

physiology of HR regulation and help determine the risk of

poor clinical cardiovascular outcomes.

Detrended Fluctuation Analysis (DFA) is an established

algorithm that can be used to quantify the nonlinear fractal

dynamics of the HRV time series by quantifying characteristic

exponents that describe the scaling of the signal’s fluctuations

(Makowiec et al., 2006; Gao et al., 2013; Constantinescu et al.,

2018; Mizobuchi et al., 2021). Adaptive Fractal Analysis (AFA) is

another nonlinear method that quantifies fractal geometry.

Although AFA and DFA techniques are similar, AFA requires

creation of a globally smooth trend signal by patching together

local polynomial fits to the time series. DFA on the other hand,

relies on discontinuous, piece-wise linear fits, which provides the

rationale to progress from DFA to Multi-Fractal DFA (MFDFA)

for multi-fractal analysis of the HR time series rather than its

mono-fractal analysis (Maity et al., 2015). When compared to

other nonlinear fractal analysis methods, a primary advantage of

DFA is that it permits the detection of intrinsic self-similarity

embedded in the seemingly nonstationary HR time series and,

because it eliminates the local trends in the signal, it avoids false

detection of artificial self-similarity in extrinsic trends. Other

advantages of DFA are that it is applicable to short time series, it

requires fewer data points compared to time and frequency

domain analysis methods, and it is robust to noise and

nonstationarity (Gieraltowski et al., 2012). A limitation of the

basic DFA algorithm is that it only provides a mono-fractal

description (Ivanov et al., 1999; Sassi et al., 2009); whereas HR is

recognized to be a multi-fractal time series that shows self-

similarity at different scales and different amplitudes with

fractal properties that vary from point to point along the time

series (Gieraltowski et al., 2012; Xia et al., 2013). As a result, a

spectrum of scale exponents is more appropriate for assessing the

multi-scale structure of HR changes and for investigating the

effects of ANS activity and intrinsic SAN function on complex

HR dynamics.

Thus, to more accurately assess non-linear HRV properties,

we have used Multi-Scale Multi-Fractal Detrended Fluctuation

Analysis (MSMFDFA) (Gieraltowski et al., 2012; Xia et al., 2013;

Castiglioni et al., 2018) as a complexity-based method to jointly

assess multi-scale and multi-fractal dynamics of HR in healthy

wildtype mice in the ultra-low and very-low frequency bands

(0.0024–0.33 Hz). The ultra-low frequency is thought to be

driven by circadian rhythms and there is disagreement about

the contributions of the SNS and PNS to ultra-low frequency

oscillations in HR (Shaffer et al., 2014; Shaffer and Ginsberg,

2017). The very-low frequency band is driven by sympatho-vagal

balance and the PNS may contribute to this band more than the

SNS (Shaffer and Ginsberg, 2017). The very-low frequency band
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is strongly associated with all-cause mortality as well as

arrhythmic death and is therefore thought to be fundamental

to overall health (Shaffer and Ginsberg, 2017). The lower range of

the ultra-low frequency band, in particular, is not typically

captured in traditional frequency domain analysis; therefore,

the MSMFDFA approach can provide novel information not

possible with other approaches.

While some studies have used multi-scale DFA analysis in

humans (Castiglioni et al., 2017; Castiglioni and Faini, 2019) and

in isolated cardiac myocytes (chick embryonic myocytes)

(Ahammer et al., 2013), a rigorous application of MSMFDFA

across several levels of organization (i.e. from in vivo to isolated

SAN myocytes) has not been reported. It is essential to do this

because it is recognized that HRV can arise from changes in ANS

activity as well as changes in intrinsic SAN function (Yaniv et al.,

2013; Yaniv et al., 2016; Dorey et al., 2020; Dorey et al., 2021).

Accordingly, we have applied MSMFDFA analysis to

measurements of heart rate/beating rate conducted at multiple

levels of organization including in unrestrained mice in vivo

(baseline and in the presence of ANS antagonists), in isolated

atrial preparations (containing the intact SAN, but devoid of

neural inputs) and in isolated SAN myocytes. These studies

enable us to accurately assess the impacts of the ANS and

intrinsic SAN function on complex HR dynamics across

multiple scales in the ultra-low and very-low frequency ranges

using non-linear MSMFDFA analysis.

Materials and methods

Mice

This study used adult male wildtype C57Bl/6 mice between

the ages of 10 and 15 weeks. All experimental procedures used in

this study followed the Canadian Council on Animal Care

guidelines and were approved by the University of Calgary

Animal Care and Use Committee. Mice were housed in

groups of 3-5 per cage using Tecniplast Green Line

GM500 cages with 500 cm2 of floor space and provided with

enrichment items (nesting material, houses) in the cages. Mice

were provided with standard rodent chow (LabDiet 5062) and

water ad libitum. Mice were kept on a 12:12 h light:dark cycle.

Temperature in the room was maintained at 21–22°C and

humidity was 32–38%. These environmental and housing

conditions were monitored daily and maintained throughout

the study.

Telemetry ECG recording

To investigate HRV in vivo, we used telemetric ECG

recordings as we have described (Moghtadaei et al., 2017;

Dorey et al., 2020; Dorey et al., 2022). ECGs and activity were

monitored in awake, freely moving mice using subcutaneously

implanted telemetric transmitters (HD-X11, Data Sciences

International). After 7 days of recovery following

transmitter insertion, telemetric ECG recordings and

activity levels were acquired continuously for 48 h. After

the baseline recording period was completed, the effects of

ANS blockade were investigated by intraperitoneal injection

of the β-adrenergic receptor (β-AR) antagonist propranolol
hydrochloride (10 mg/kg) and the muscarinic (M2) receptor

antagonist atropine sulfate (10 mg/kg), alone or in

combination, at approximately the same time each day (9:

00–11:00 a.m.). A minimum of 24 h was given between

injections. After drug injection, the ECG was recorded

continuously for 1 h. ECG data acquisition, ECG filtering

and R-wave detection was done using Ponemah software

(Data Sciences International).

Electrogram recordings in isolated atrial
preparations

Intact atrial preparations containing the SAN, but devoid

of autonomic innervation, were prepared as we have

described previously (Dorey et al., 2020; Dorey et al.,

2021). Beating atrial preparations were superfused

continuously with Krebs solution (37°C) containing (in

mM): 118 NaCl, 4.7 KCl, 1.2 KH2PO4, 12.2 MgSO4, 1

CaCl2, 25 NaHCO3, 11 glucose. This Krebs solution was

bubbled with 95% O2/5% CO2 in order to maintain a pH of

7.4. After the atrial preparation was equilibrated for at least

30 min, electrograms were measured continuously using

needle electrodes (Grass Technologies) placed in each

atrial appendage. Electrograms were acquired using a

Powerlab 26T (AD Instruments).

Action potential recordings in isolated
sinoatrial node myocytes

SAN myocytes were isolated using procedures we have

described previously (Rose et al., 2004; Mackasey et al., 2018).

Spontaneous action potentials (APs) were recorded using the

perforated patch-clamp technique on single SAN myocytes. For

recording APs the recording chamber was superfused with a

normal Tyrode’s solution containing (in mM): 140 NaCl, 5 KCl, 1

MgCl2, 1 CaCl2, 10 HEPES, and 5 glucose, with pH adjusted to

7.4 with NaOH. The pipette filling solution contained (in mM)

135 KCl, 0.1 CaCl2, 1 MgCl2, 5 NaCl, 10 EGTA, 4 Mg-ATP,

6.6 Na-phosphocreatine, 0.3 Na-GTP and 10 HEPES, with

pH adjusted to 7.2 with KOH. Amphotericin B (200 μg/ml)

was added to this pipette solution to record APs with the

perforated patch clamp technique. APs were recorded at room

temperature (22–23°C).
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Analysis of ECG recordings and heart rate
variability

The ECG signal was first divided into low and high activity

phases based on activity measurements from telemeters. The

ECG signals at high and low activity were each divided into 2 h

segments and each 2 h segment was divided into 2000 beat

segments for the fractal analysis. For each activity level, five

separate 2 h segments were analyzed and averaged. For the

signals recorded from isolated atrial preparations and isolated

SANmyocytes, peak detection was performed on the electrogram

recordings in atrial preparation or spontaneous APs in SAN

myocytes, respectively. Segments with 2000 and 1,000 beats from

atrial preparations and SAN myocytes were selected for the

fractal analysis respectively. The MSMFDFA algorithm is

robust to noise and non-stationarity; therefore, it was not

necessary to identify and remove sinus pauses and ectopic

activity in the tachogram.

Time and frequency domain HRV analysis

Time and frequency domain metrics were analyzed using

customized software written in MATLAB (MathWorks, Natick,

Massachusetts) as we have described previously (Moghtadaei

et al., 2017; Dorey et al., 2021). HRV was assessed using time and

frequency domain analysis from ECG recordings in vivo.

Stationary NN interval time series of at least 5 min in

duration were used for time domain analysis. Each episode

was examined to ensure a stationary and stable sinus rhythm

with no trend or periodic fluctuations. Next, R wave detection

was performed, and RR interval time series were obtained. In

isolated atrial preparations, NN intervals were defined as the

interval between peaks on the electrogram recordings in atrial

preparations. The time domain parameters we are reporting

include the standard deviation of all normal RR intervals

(SDNN, in ms) and the root mean square differences between

successive RR intervals (RMSSD, in ms).

To correct for the influence of HR on SDNN, we plotted

SDNN as a function of HR for all baseline data and fitted these

data with an exponential function, which was then used to

generate the following equation to correct for HR and

produce corrected SDNN (cSDNN).

cSDNN � SDNN

e−0.004 × HR
(1)

For frequency domain analysis, each of the low and high activity

phases were divided into 2 min episodes. These time frames were

chosen in order to ensure that each episode contained at least

1,024 data points (R waves). Similar to the time domain analysis,

each episode was manually examined to ensure a stationary and

stable sinus rhythm, which is required for performing fast

Fourier transforms (see below). Next, R wave detection was

performed, and the RR interval time series were generated.

Linear trends and drift were removed from the signal to

reveal the HRV in the data. In the present study, we have

used Welch’s method to characterize the frequency content

of the signal (i.e. to estimate the power of the signal at

different frequencies). In Welch’s method, the signal is

broken into overlapping segments to reduce noise in the

frequency spectrum. Then, the segments are windowed to

reduce spectral leakage. The periodogram of each windowed

segment is calculated using the Fourier transform. Finally,

the periodograms are averaged to make a single frequency

spectrum. In the present study, we have used 50%

overlapping and the Hamming window for the spectral

density estimation. The total power of each periodogram

was measured as a total index of HRV, which determines the

integral of total variability over the entire frequency range.

Then, the high frequency (HF) and low frequency (LF)

components were extracted. The HF component of HRV

(1.5–5 Hz) is predominantly mediated by the phasic activity

of the parasympathetic nervous system. The LF oscillations

of HR (0.1–1.5 Hz) are regulated by both the sympathetic

and parasympathetic nervous systems; however, the tonic

sympathetic component is dominant.

MSMFDFA algorithm

The MSMFDFA algorithm used in this study is based on the

conventional DFA algorithm. Given an R-R interval time series

x(j) with mean �x, evaluated over N consecutive heart beats (1 ≤
j ≤ N), its cumulative sum is calculated as Eq. 2.

y(i) � ∑i

j�1(x(j) − �x), i � 1, 2, . . . , N (2)

The y(i) signal is then segmented into BS 70% overlapping

blocks of size s, resulting in ys(b), b � 1, 2, . . . , Bs. A short

segment of N − sBs data at the end of the series is not

included in the analysis. 70% overlap was used to save

computation time compared to maximal overlap, while

keeping the estimator variance low compared to no overlap,

with the final result being very similar to the maximal

overlap case.

The first order trend of each segment ys(b) is calculated
as its least square fit Ys(b), b � 1, 2, . . . , Bs. Then the variance

of the detrended signal (ys(b) − Ys(b)) is calculated using

Eq. 3.

F(s) �
��������������������
1
Bs

∑Bs

b�1(ys(b) − Ys(b))2√
(3)

The variance, F(s), is a function of scale, s, and this

procedure is repeated over a range of different scales (i.e.

from 3 to 415 s). Next, the q order fluctuation function is

calculated using Eq. 4.
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Fq(s) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
Bs

∑Bs

b�1(F(s))q
1/q q ≠ 0

e
1

2Bs
∑Bs

b�1lnF(s) q � 0

(4)

The slope of this surface (αq(s)) is the q-order generalized Hurst

exponent, also known as MSMFDFA scale exponent (Castiglioni

et al., 2011). In general, the Hurst exponent is known to be less

than one for fractional Gaussian noise, and greater than one for

fractional Brownian motion (Ihlen, 2012). If x(j) has fractal

characteristics, Fq(s) increases as a power-law function, i.e.

Fq(s)∝ sαq(s) with αq(s)> 1. MSMFDFA scale exponents

provide important information about the HRV signal.

Specifically:

1- If the time series x(j) has long-range fractals,Fq(s)
increases as a power-law (Fq(s)∝ sαq(s), αq(s)> 1) for large
values of s. Similarly, if x(j) has short-range fractals, αq(s)> 1

for small values of s.

2- If x(j) is mono-fractal then Fq(s) increases as a power of s
for any choice of the parameter q(Fq(s)αsαq(s)), and α(s) is
independent of q. If x(j) is a multi-fractal time series, its small

and large fluctuations scale differently and there will be a

significant dependence of αq(s) on q. In this case, αq(s)
mainly reflects the fractal components with larger and

smaller amplitudes if q > 0 and q < 0 respectively

(Kantelhardt et al., 2002).

In this study, both scale (s) and order (q) dependencies of

the fractal structures in the HRV signal were quantified. The

analysis was performed in the beat domain and then each

scale coefficient was associated with its temporal scale, by

mapping the beat domain into the time domain. This step is

necessary for comparing different conditions with different

average HR values.

The multi-fractality was also quantified as a function of scale

using the multi fractal index (MFI(s)). Specifically, for each

scale s, the standard deviation of all αq(s) values estimated over

the range −qr≤ q≤ qr, which is symmetric around 0 is calculated,

and theMFI(s) was defined using Eq. 5 (Castiglioni et al., 2018).

MFI(s) � σq(αq(s))
2qr

(5)

If instead of local slopes, for each value of q a single slope is

calculated over the whole range of scales, then Fq(s)∝ sAq , where

Aq is independent of scale. In this case Aq is related to the

classical multi-fractal scaling exponents or Renyi index (τq) as
given in Eq. 6.

τq � qAq − 1 (6)

The multi-fractal spectrum (Dq) is related to τq via a

Legendre transform (Kantelhardt et al., 2002) given in Eqs 7, 8.

hq � τ′q (7)
Dq � qhq − τq (8)

Here,Dq reflects the multi-fractal spectrum of the subset of series

and its value reflects the fractal dimension with the singularity

exponent of hq (Zhang et al., 2019) which is inversely related to

singularity (i.e. bigger singularities have smaller hq values). The

central tendency of Dq represents the average fractal structure of

the HRV. The deviation from average fractal structure for

segments with large and small fluctuations is represented by

the multi-fractal spectrum width (hqmax − hqmin). The width and

shape of the multi-fractal spectrum classifies scale invariant

structures of HRV time series. Larger multi-fractal spectrum

width implies more unevenness of the time series distribution,

and greater multi-fractal strength.

Spectra of MSMFDFA scale exponents, including the Hurst

exponent, multi-fractal index, Renyi index, and multi-fractal

spectrum were calculated for scales between 3 and 415 s,

which can be considered as a qualitative measure of the

power spectrum in the region of the ultra-low and very-low

frequency bands, (i.e. at frequencies between 0.0024 and

0.33 Hz).

Statistical analysis

All data are presented as means ± SEM. Data were analyzed

using Student’s t-test, two-way repeated measures ANOVA test

or two-way ANOVAwith a Holm-Sidak posthoc test as indicated

in each figure legend. p < 0.05 was considered significant.

Results

Time and frequency domain HRV analysis

Initially, standard time and frequency domain HRV metrics

were calculated from ECGs, electrograms or spontaneous AP

recordings for each experimental condition (Table 1).

Specifically, in vivo analysis was performed in baseline low

activity and baseline high activity conditions (activity was

assessed telemetrically), as well as after application of the ANS

blockers atropine, propranolol or both in combination. Time and

frequency domain analysis was also done in isolated atrial

preparations and in isolated SAN myocytes (Table 1). For

mice the low frequency band was 0.1–1.5 Hz and the high

frequency band was 1.5–5 Hz for traditional frequency

domain analysis (Moghtadaei et al., 2017; Behar et al., 2018).

The data in Table 1 demonstrate that values for time domain

metrics (SDNN, cSDNN, RMSSD) and frequency domain

metrics (total power, HF power, LF power) were comparable

in each condition to those reported previously for mice in vivo
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(baseline and ANS blockade), as well as for isolated mouse atrial

preparations and isolated mouse SAN myocytes (Moghtadaei

et al., 2017; Dorey et al., 2020; Dorey et al., 2021; Dorey et al.,

2022). In particular, ANS blockers reduced time and frequency

domain measures of HRV in vivo as expected. Furthermore, time

domain analysis demonstrates that variability was higher in

isolated atrial preparations and isolated SAN myocytes

compared to baseline low activity conditions in vivo, as

demonstrated previously (Dorey et al., 2020; Dorey et al., 2021).

Effect of activity level on MSMFDFA

Next, nonlinear HRV was assessed using MSMFDFA, which

enables assessment of HRV in the frequency range of

0.0024–0.33 Hz, encompassing the very-low frequency

(0.0056–0.1 Hz) and ultra-low frequency bands (0–0.0056 Hz)

(Behar et al., 2018).

Nonlinear HRV was assessed from ECGs recorded in

conscious, freely moving mice in vivo. In all groups and

conditions, the generalized q dependent fluctuation function

Fq(s) of HRV increases as a function of scale confirming the

underlying fractal nature of the HRV signal (Figure 1A). Scale

(i.e. time scale) describes the time range (in seconds) in which the

fractals are found and which were analyzed (Castiglioni and

Faini, 2019). The existence of local deviations from the overall

linear slope in the log-log plot (Figure 1A) indicates the

dependence of Fq(s) on the q order, confirming the multi-

fractality of the HRV signal. Thus, order is used to extract

and quantify the specific fractal amplitude. Large amplitude

fluctuations that have fractal characteristics are found when

positive orders of the fluctuation function are calculated while

small amplitude fluctuations with fractal characteristics are

found when negative orders of the fluctuation function are

calculated (Castiglioni and Faini, 2019).

The low and high-activity phases were separated based on

activity measured from telemeters. MSMFDFA parameters were

then measured for ECG in phases of high and low activity. In

baseline conditions for most scales, αq(s)> 1 for q < 0 indicating

the existence of low-amplitude fractals in the signal; however, the

scale dependence is affected by the activity level (Figures 1B,C).

Specifically, the long-range (scale>180 s) low amplitude (q < 0)

fractals are stronger in high activity conditions compared to low

activity conditions (Figures 1B,C). The mid-range (100 s <
scale<180 s; Figures 1B,C) and short-range (scale<15s; Figures
1D,E) low amplitude fractals, on the other hand, are stronger

during low activity. Overall, analysis of the multi fractal index

shows larger variability in scale exponents for baseline low

activity episodes for scales less than 180 s and for high activity

episodes for scales greater than 180 s (Figure 1F).

During high activity episodes, when SNS activity is increased,

the average fractal structure of the HRV signal was increased

compared to low activity, which is evident from the shift in the

central tendency of the multi-fractal spectrum of the HRV signal

towards smaller singularities (i.e. larger hq values; Figure 1G).

Furthermore, weaker multi-fractality during high activity

episodes is evident from the smaller multi-fractal spectrum

width (Figure 1H).

ANS modulation of MSMFDFA on HRV in
vivo

To directly investigate the effects of ANS activity on

MSMFDFA of HRV, mice were given ANS blockers beginning

with atropine to block the PNS (Figure 2). Atropine substantially

altered the spectrum of HRV scale exponents compared to

baseline low activity conditions as shown in scale exponent

heat maps (Figures 2A–C). Atropine eliminated mid-range

low amplitude fractals at 100 s < scales<200 s and q < 0 and

TABLE 1 Time and frequency domain analysis of HRV in vivo, in isolated atrial preparations and in isolated SAN myocytes.

Parameter Baseline: low
activity
in vivo

Baseline: High
activity
in vivo

Atropine
in vivo

Propranolol in
vivo

Atropine and
propranolol
in vivo

Atrial
preparation

SAN
myocyte

Mean NN 126.1 ± 12.1 102.0 ± 4.7* 96.1 ± 5.7* 116.9 ± 4.0* 123.6 ± 7.8 153.9 ± 10.2* 410.7 ± 23.0*

SDNN 10.2 ± 2.4 8.6 ± 2.0 5.0 ± 1.1* 4.9 ± 0.90* 5.01 ± 1.5* 15.6 ± 3.8* 49.2 ± 8.2*

cSDNN 23.0 ± 4.7 23.4 ± 4.8 14.4 ± 2.6* 11.7 ± 2.3* 11.5 ± 3.3* 15.6 ± 3.7* 49.2 ± 8.2*

RMSSD 5.1 ± 1.3 4.6 ± 1.4 2.5 ± 0.8* 3.4 ± 0.7* 4.3 ± 1.7* 11.6 ± 2.7* 44.4 ± 8.9*

Total power 1.4 ± 0.9 1.4 ± 1.1 0.2 ± 0.1* 0.7 ± 0.3* 0.4 ± 0.2* 0.005 ± 0.002* 0.039 ± 0.01*

HF power 0.56 ± 0.3 0.53 ± 0.4 0.12 ± 0.1* 0.34 ± 0.2* 0.28 ± 0.1* 0.004 ± 0.002* 0.0003 ±
0.0001*

LF power 0.81 ± 0.6 0.83 ± 0.7 0.02 ± 0.01* 0.32 ± 0.2* 0.12 ± 0.1* 0.0013 ± 0.0006* 0.021 ± 0.008*

Mean NN, mean N-N interval; SDNN, standard deviation of all normal NN, intervals; cSDNN, corrected SDNN; RMSSD, root mean square of successive differences in NN, interval; HF,

power, high frequency power; LF, power, low frequency power. Data are mean ± SEM; n = 7 mice for in vivo groups, n = 7 isolated atrial preparations, n = 6 SAN, myocytes. *p < 0.05 vs.

baseline LA, by Student’s t-test.
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decreased αq(s) to values less than one in this range (Figures

2A,B). At scales smaller than 80 s, atropine increased αq(s) values
above one for q > 0 (Figures 2B,C). Atropine also increased αq(s)
at 15 s < scales<50 s and q < 0, as well as at scales<15 s and q > 0,

and decreased αq(s) to values below one for scales<10 s and q <
-4 (Figures 2D–F).

Consistent with these heat maps, analysis of the multi fractal

index following atropine injection shows there is larger variability

in scale exponents of the HRV signal during PNS blockade for the

majority of scales from 3 to 415 s, except for scales<10 and

100 s < scales<200 s when compared to baseline low activity

(Figure 2G).

The multi-fractal spectrum of HRV after atropine injection

was asymmetric with left tail truncation (Figure 2H) that

originated from a leveling of the q-order multi-fractal

exponent for positive q values (Figure 2I) indicating that the

q-order DFA is insensitive to local fluctuations with large

magnitudes. Representative tachograms for baseline low

activity and atropine injection confirm that the variability of

RR intervals was smaller, and lacked large amplitude local

fluctuations, after atropine injection (Figure 2J).

In addition, the fractal structure of the HRV signal was

increased after injection of atropine as illustrated by a shift in

the central tendency of the multi-fractal spectrum of the HRV

signal towards smaller singularities (larger hq values; Figure 2H).

This occurred in association with a reduction in multi-fractality

strength as shown by a smaller multi-fractal spectrum width in

the presence of atropine (Figure 2K).

FIGURE 1
Multiscale multi-fractal detrended-fluctuation analysis of heart rate variability in wildtype mice in vivo. (A) Overall RMS (Fq(s)) vs. scale for
different orders (−5<q<5)where both Fq and scale are represented in log2 coordinates. (B, C)Heatmaps for MSMFDFA scale exponents (αq(s)) as a
function of order (q) and scale for −5<q<5 and 3s< scale<415s in baseline low activity (B) and baseline high activity (C); data are an average of n =
7 mice, overlap = 70%. (D, E)Magnification of the regions marked with white rectangles in B and C for the HRV signal in baseline low activity (D)
and baseline high activity (E) for 3s< scale<80s. (F)Multi-fractality index over 3s< scale<415s and qr � 5 for baseline low activity and baseline high
activity; n= 7mice, data analyzed using two-way repeatedmeasures ANOVA. (G)Multi-fractal spectrum of the HRV signal in baseline low activity and
baseline high activity; n = 7 mice. (H) Multi-fractal spectrum width of the HRV signal in baseline low activity and baseline high activity; n = 7 mice;
****p = 1.8 × 10−7 vs. baseline low activity by Student’s t-test.
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Next, the effects of SNS blockade on MSMFDFA of HRV

were investigated by injecting mice with propranolol (Figure 3).

Except for few regions, the overall MSMFDFA spectrum

remained similar to baseline low activity conditions after

propranolol injection. Heat maps of scale exponents show that

propranolol decreased αq(s) at 310 s < scales and q > 0 with

FIGURE 2
Effects of atropine on MSMFDFA of heart rate variability in wildtype mice in vivo. (A, B) Heat maps for MSMFDFA scale exponents (αq(s)) as a
function of order (q) and scale for −5<q<5 and 3s< scale<415s in baseline low activity (A) and after intraperitoneal injection of atropine (B). (C)
Statistical comparison of the MSMFDFA scale exponent of the HRV signal in baseline low activity vs. atropine using two tailed Student’s t-test for
−5<q<5 and 3s< scale<415s; n = 7 mice. (D,E) Magnification of the regions marked with white rectangles in A and B for the HRV signal in
baseline low activity (D) and after application of atropine (E) for 3s< scale<80s. (F) Statistical comparison of theMSMFDFA scale exponent of the HRV
signal in baseline low activity vs. atropine using two tailed Student’s t-test for −5<q<5 and 3s< scale<80s; n = 7mice. (G)Multi-fractality index over
3s< scale<415s and qr � 5 for baseline low activity and atropine, n = 7 mice, data analyzed using two-way repeated measures ANOVA. (H) Multi-
fractal spectrum of the HRV signal in baseline low activity and after application of atropine; n = 7 mice. (I) Leveling of the q-order multi-fractal
exponent of the HRV signal for positive q values after intraperitoneal injection of atropine; n = 7 mice. (J) Representative tachograms in baseline LA
conditions and after application of atropine. (K) Multi-fractal spectrum width of the HRV signal in baseline low activity and after application of
atropine; n = 7 mice; *p = 0.018 vs. baseline low activity by Student’s t-test.
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values remaining less than 1 (Figures 3A–C) and increased αq(s)
at 30 s < scales<60 s and q > 0 without exceeding 1 (Figures

3D–F). Propranolol also decreased αq(s) at short scales (<10 s)

for q < 0 to values less than 1 (Figures 3D–F) indicating that

blocking the SNS eliminates low amplitude short-range

fractals.

FIGURE 3
Effects of propranolol on MSMFDFA of heart rate variability in wildtypemice in vivo. (A, B)Heat maps for MSMFDFA scale exponents (αq(s)) as a
function of order (q) and scale for −5<q<5 and 3s< scale<415s in baseline low activity (A) and after intraperitoneal injection of propranolol (B). (C)
Statistical comparison of the ofMSMFDFA scale exponent of the HRV signal in baseline low activity vs. propranolol using two tailed Student’s t-test for
−5<q<5 and 3s< scale<415s; n = 7 mice. (D,E) Magnification of the regions marked with white rectangles in A and B for the HRV signal in
baseline low activity (D) and after application of propranolol (E) for 3s< scale<80s. (F) Statistical comparison of the MSMFDFA scale exponent of the
HRV signal in baseline low activity vs. propranolol using two tailed Student’s t-test for −5<q<5 and 3s< scale<80s; n = 7 mice. (G) Multi-fractality
index over 3s< scale<415s and qr � 5 for baseline low activity and propranolol; n= 7mice, data analyzed using two-way repeatedmeasures ANOVA.
(H)Multi-fractal spectrum of theHRV signal in baseline low activity and after application of propranolol; n= 7mice. (I) q-ordermulti-fractal exponent
of the HRV signal as a function of q value after application of propranolol; n = 7 mice. (J) Representative tachograms in baseline LA conditions and
after application of propranolol (K)multi-fractal spectrumwidth of HRV signal in baseline low activity and after propranolol; n= 7mice, data analyzed
by Student’s t-test.
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FIGURE 4
Effects of autonomic nervous system blockade on MSMFDFA of heart rate variability in wildtype mice in vivo. (A, B) Heat maps for MSMFDFA
scale exponents (αq(s)) as a function of order (q) and scale for −5<q< 5 and 3s< scale<415s in baseline low activity (A) and after combined
intraperitoneal injection of atropine + propranolol (B). (C) Statistical comparison of the of MSMFDFA scale exponent of the HRV signal in baseline low
activity vs. atropine + propranolol using two tailed Student’s t-test for −5<q<5 and 3s< scale<415s; n = 7 mice. (D, E) Magnification of the
regions marked with white rectangles in A and B for the HRV signal in baseline low activity (D) after application of atropine + propranolol (E) for
3s< scale<80s. (F) Statistical comparison of the MSMFDFA scale exponent of the HRV signal in baseline low activity and after application of atropine
and propranolol using two tailed Student’s t-test for −5<q< 5 and 3s< scale<80s; n = 7 mice (G) multi-fractality index over 3s< scale<415s and
qr � 5 for baseline low activity and atropine + propranolol; n = 7 mice; data analyzed by two-way repeated measures ANOVA. (H) Multi-fractal
spectrum of the HRV signal in baseline low activity and after atropine + propranolol; n = 7mice. (I) Leveling of the q-order multi-fractal exponent of
the HRV signal for negative q values after application of atropine + propranolol; n = 7 mice. (J) Representative tachograms in baseline LA conditions
and after application of atropine + propranolol. (K) Multi-fractal spectrum width of the HRV signal in baseline low activity and after atropine +
propranolol; n = 7 mice; ****p = 8.6 × 10−8 vs. baseline low activity by Student’s t-test.
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Overall, the multi fractal index was not different when

comparing propranolol to baseline low activity conditions

despite values being lower on average for scales<127 s after

application of propranolol (Figure 3G). The multi-fractal

spectrum of the HRV signal after injection of propranolol

remained symmetric and was similar to baseline low activity

conditions with no differences in central tendency (Figure 3H).

Consistent with this, the q-order multi-fractal exponent was

similar between baseline LA and propranolol (Figure 3I) and

representative tachograms show similar patterns of fluctuation

between these conditions (Figure 3J). Finally, the multi-fractal

spectrum width was not different between baseline LA and

propranolol (Figure 3K). This indicates that propranolol did

not change the fractal structure of the HRV signal or its multi-

fractality strength.

Intrinsic MSMFDFA of HRV in vivo and ex
vivo

HRV is determined in part by intrinsic SAN function.

Accordingly, intrinsic MSMFDFA of HRV was investigated in

the presence of ANS blockade in vivo. Combined injection of

atropine and propranolol altered the MSMFDFA scale exponents

throughout the measured parameter space of 3 s < scales<415 s
and -5<q < 5 compared to baseline low activity such that αq(s)
was always greater than one (Figures 4B,C). This indicates that

the HRV signal became fractal on different ranges and orders

after ANS blockade. The only exception to this occurred at

scales<15 s and q < -3 where the short-range, low amplitude

fractals that were present and strong in baseline low activity as a

marker of the intact ANS (Figure 4D) are eliminated after

injection of atropine and propranolol (Figures 4E,F).

Analysis of the multi fractal index after ANS blockade shows

that there is less variability in scale exponents of the HRV signal

for 3 s < scales<180 s compared to baseline low activity

conditions (Figure 4G). The multi-fractal spectrum after

injection of atropine and propranolol was asymmetric with a

right tail truncation (Figure 4H) in association with a leveling of

the q-order multi-fractal exponent for negative q values

(Figure 4I). This indicates that the q-order DFA is insensitive

to the local fluctuations with small magnitudes after ANS

blockade. In agreement with this, representative tachograms

demonstrate less low amplitude local variability after injection

of atropine and propranolol compared to baseline low activity

conditions (Figure 4J).

The presence of αq(s)> 1 for most of the measurement

region after ANS blockade is due to an increase in the average

fractal structure of the HRV. Consequently, the central tendency

of the multi-fractal spectrum of the HRV signal shifts towards

smaller singularities (larger hq values; Figure 4H). Furthermore,

because the MSMFDFA spectrum became more uniform with

less variability, the multi-fractal spectrum width was significantly

shorter after combined injection of atropine and propranolol

(Figure 4K) indicating a reduction in multi-fractality strength

after ANS blockade.

To directly investigate the role of the SAN in HRV fractality,

MSMFDFA was performed on beating rate variability signals in

isolated mouse atrial preparations (devoid of ANS inputs) and in

isolated mouse SAN myocytes (Figures 5, 6). For scales>80 ms,

αq(s) was larger in isolated atrial preparations compared to

baseline low activity condition in vivo (Figures 5A,B).

MSMFDFA scale exponents were smaller in isolated SAN

myocytes compared to isolated atrial preparations (Figures

5B,C). The short-range low amplitude strong fractals evident

on the MSMFDFA heat map for baseline low activity (in vivo) at

αq(s)≥ 1.5, scales<15 s and q < 0 (Figure 5D) are not present in

the signals recorded in isolated atrial preparations or isolated

SANmyocytes (Figures 5E,F). Furthermore, for 18 s < scale<80 s,
αq(s) is greater in isolated atrial preparations and smaller in

isolated SAN myocytes compared to baseline low activity

conditions in vivo (Figures 5E,F). Finally, at scale<80 s, the

MSMFDFA scale exponents of isolated SAN myocytes are

smaller compared to isolated atrial preparations (Figures

5E,F). The statistical analysis for each of these comparisons

are illustrated in Figures 5G–L.

The multi fractal index was smaller in isolated atrial

preparations (at scale<64 s) and in isolated SAN myocytes (at

scale<250 s) compared to baseline low activity conditions in vivo

(Figure 6A). This indicates less variability in scale exponents of

the beating rate variability in isolated atrial preparations and

SAN myocytes compared to those for HRV in vivo when ANS

signaling is intact.

Consistent with the effects of combined injection of atropine

and propranolol in vivo (Figure 4H) the multi-fractal spectrum of

the beating rate variability signal in isolated atrial preparations

and isolated SAN myocytes were each asymmetric with right tail

truncations (Figure 6B). Isolated atrial preparations and SAN

myocytes each displayed a leveling of the q-order multi-fractal

exponent for negative q values (Figure 6C) indicating that in the

absence of ANS signaling the q-order DFA is insensitive to the

magnitude of local fluctuations with small magnitudes.

Representative tachograms demonstrate larger variability in

beat-to-beat intervals in isolated atrial preparations and

isolated SAN myocytes compared to baseline low activity

conditions in vivo (Figure 6D). Finally, the width of the

multi-fractal spectrum was shorter in isolated SAN myocytes

compared to baseline low activity in vivo and similar between

isolated atrial preparations and baseline low activity conditions

in vivo (Figure 6E).

Discussion

The goal of the present study was to assess the nonlinear

fractality of HRV in vivo and in isolated preparations (intact
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atrial preparations and SAN myocytes) in adult healthy mice.

Furthermore, we sought to assess the contributions of changes in

ANS activity as well as intrinsic SAN function to the fractal

structure of the HRV. Initially, we used time and frequency

domain analysis to demonstrate changes in HRV during ANS

blockade in vivo as well as in isolated atrial preparations and

FIGURE 5
MSMFDFA of beating rate variability in isolated atrial preparations and isolated SAN myocytes. (A–C) heat maps for MSMFDFA scale exponents
(αq(s)) as a function of order (q) and scale for −5<q<5 and 3s< scale<415s in baseline low activity in vivo (n = 7) (A), in isolated atrial preparations
(n= 7) (B), and in isolated SANmyocytes (n= 6) (C). (D–F)magnification of the regionsmarked with white rectangles in panels A–C for the HRV signal
in baseline low activity in vivo (D) in isolated atrial preparations (E), and in isolated SAN myocytes (F) for 3s< scale<80s. (G, H) Statistical
comparison of the MSMFDFA scale exponent of the HRV and beating rate variability signals in baseline low activity in vivo vs. isolated atrial
preparations (G), and isolated SAN myocytes (H) by Student’s t-test for −5<q<5 and 3s< scale<415s. (I) Statistical comparison of the MSMFDFA
scale exponent of beating rate signals in isolated atrial preparations vs. isolated SAN myocytes by Student’s t-test for −5<q<5 and 3s< scale<415s.
(J, K) Statistical comparison of theMSMFDFA scale exponent of HRV and beating rate variability signals in baseline low activity in vivo vs. isolated atrial
preparations (J), and isolated SANmyocytes (K) by Student’s t-test for −5<q<5 and 3s< scale<80s. (L) Statistical comparison of the MSMFDFA scale
exponent of beating rate variability signals in isolated atrial preparation vs. isolated SANmyocytes by Student’s t-test for −5<q< 5 and 3s< scale<80s.
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isolated SAN myocytes, that are typical of those shown in

previous studies (Moghtadaei et al., 2017; Dorey et al., 2020;

Dorey et al., 2021; Dorey et al., 2022). However, nonlinear HRV

analysis using MSMFDFA provided additional insight not

possible with traditional approaches. This is because

traditional time and frequency domain analyses give static

values for HRV while MSMFDFA generates a wide spectrum

of fractal structures that provide more comprehensive insights.

Specifically, while traditional HRV measures can determine if

HRV is reduced, MSMFDFA can determine the structure of the

variability as well as fractal characteristics. MSMFDFA is also

well suited to detecting more subtle differences between

experimental conditions. For example, the differences between

time and frequency domain HRV measures during high and low

activity phases are relatively small; however, they clearly have

different fractal spectra as shown in Figure 1.

Our results demonstrate that the fractal properties of the

HRV signal vary from point to point along the ECG time series,

leading to multi-fractality. We quantified the MSMFDFA scale

exponents on a wide range of scale (3 − 415 s) and fractal order

(-5<q < 5) and our results describe the dependance of the fractal

properties with different orders on the time scale in which the

multi-fractality is measured. This time scale is related to the ultra-

low and very-low frequency band of the HRV signal, portions of

which are not quantifiable using traditional frequency domain

analysis.

Our study demonstrates that PNS blockade and complete

ANS blockade in vivo each create relatively stable and less

variable fractal structures in HRV resulting in weaker multi-

fractality when compared to baseline (low activity) conditions in

vivo. Similar observations were made in isolated atrial

preparations and isolated SAN myocytes, confirming that

these patterns are associated with the loss of ANS

(particularly PNS) signaling to the heart. In healthy mice, in

baseline low activity conditions, the multi-fractal spectrum of the

HRV signal was symmetrical with relatively large variability in

MSMFDFA scale exponents ranging from αq(s) � 0.7 to αq(s) �
1.6 (as demonstrated in heat maps and by quantification of MSF

FIGURE 6
Quantification of multi-fractality in isolated atrial preparations and isolated SAN myocytes. (A) Multi-fractality index over 3s< scale<415s and
qr � 5 for baseline low activity in vivo, isolated atrial preparations and isolated SANmyocytes. Data analyzed by two-way repeatedmeasures ANOVA.
(B) Multi-fractal spectrum of the HRV and beating rate variability signals in baseline low activity in vivo, isolated atrial preparations and isolated SAN
myocytes. (C) Leveling of the q-order multi-fractal exponent for negative q values in the beating rate variability signal of isolated atrial
preparations (n= 7) and isolated SANmyocytes (n= 6). (D) Representative tachograms for baseline low activity in vivo, isolated atrial preparations and
isolated SAN myocytes. (E) Multi-fractal spectrum width of the HRV and beating rate variability signals in baseline low activity in vivo, isolated atrial
preparations, and isolated SAN myocytes. Data analyzed by one-way ANOVA with a Holm-Sidak posthoc test.
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width) indicating that both random behavior as well as a

combination of weak and strong fractals exist in the HRV

signal at baseline. Conversely, the multi-fractal spectrum of

the HRV signal following ANS blockade was asymmetric with

low variability of MSMFDFA scale exponent values and reduced

MSF width. In the case of combined ANS blockade, MSMFDFA

scale exponents ranged from αq(s) � 1 to αq(s) � 1.6, which

indicates the existence of fractals of various strengths only without

randomness in the HRV signal. Similarly, the multi-fractal spectrum

of the beating rate variability signal in isolated SANmyocytes was also

asymmetric with low variability of MSFMDFA scale exponent values

and reduced MSF width. However, in this case, MSMFDFA scale

exponents mainly covered the range of values that are responsible for

randomness and weak fractals (i.e. from αq(s) � 0.7 to αq(s) � 1.3).

Collectively, these data demonstrate the importance of variability in

MSMFDFA scale exponents, in addition toHRV itself, as an indicator

of a healthy, adaptive cardiovascular system.

Our study shows that when the ANS is blocked or absent, the

short-range, low amplitude fractals that were present and strong

in vivo in baseline low activity conditions are eliminated. This

was evident in high activity conditions in vivo and after ANS

blockade as well as in isolated atrial preparations and isolated

SAN myocytes. This indicates that the presence of short range,

low amplitude fractals is a marker of intact ANS signaling with

normal sympatho-vagal balance.

We found that blocking PNS signaling with atropine induces

high amplitude short range fractals (scales<15 s). This is

consistent with previously reported studies in healthy humans

showing increases in traditional DFA α1 after atropine or

glycopyrrolate administration (Tulppo et al., 2001; Perkiomaki

et al., 2002; Perkiomaki et al., 2005; Castiglioni et al., 2011).

Atropine also induced low amplitude fractals in the range of

15–50 s, but eliminated high amplitude, long range (scale>300 s),
low amplitude, mid-range (100 s < scale<200 s), and short-range

fractals (scale<10 s).
Additionally, our data show that multi-fractal HRV is

primarily associated with PNS modulation and less with SNS

modulation. This suggests that, in addition to its well-known role in

regulating HRV at high frequency time scales (Billman, 2011), the

PNS also critically regulates the ultra-low and very-low frequency

components of HRV. These findings are consistent with previous

studies in healthy humans (Nunes Amaral et al., 2001; Struzik et al.,

2004; Nakamura et al., 2016; Shaffer and Ginsberg, 2017). In

agreement with this, we found that SNS blockade with

propranolol did not significantly change the MSMFDFA

spectrum, multi fractal index, and multi fractal spectrum

of the HRV signal. The only substantial effect of propranolol

was to eliminate low amplitude short-range fractals, which is

consistent with previous studies in patients (Yamamoto and

Hughson, 1994; Castiglioni et al., 2011).

Following combined injection of atropine and propranolol,

we found that the HRV signal became fractal on all scales and

orders investigated. The only exception was the short-range, low

amplitude fractals that were eliminated after combined atropine

and propranolol injection. As the MSMFDFA spectrum becomes

more uniform with less variability, having fractals over the entire

parameter space, multi-fractality strength was clearly reduced

during ANS blockade. Consistent with this, previous studies

demonstrate that fractal-like behavior remains in dogs with

complete denervation (Li et al., 2008).

Consistent with the effects of ANS blockade in vivo, the

present study demonstrates that MSMFDFA scale exponents

were larger in isolated atrial preparations compared to

baseline low activity conditions in vivo. In agreement with

this, the statistical comparison of the isolated atrial

preparation to baseline low activity in vivo illustrates

differences in similar regions to those observed when

comparing ANS blockade in vivo with baseline low activity in

vivo. This is consistent with the observation of substantially

steeper slopes in denervated hearts in previous studies (Bigger

et al., 1996; Perkiomaki et al., 2000). In addition, the existence of

self-similar scale-free correlation (i.e. fractals in action potential

firing intervals in SAN myocytes regardless of ANS receptor

stimulation) have been previously reported (Yang et al., 2021).

UsingMSMFDFA we also demonstrate fractals with a wide range

of characteristics (i.e. strengths and amplitudes) in isolated SAN

myocytes, isolated atrial preparations, and in intact hearts during

ANS blockade. These data support the conclusion that fractal

behavior is generated, at least in part, from the intrinsic

properties of the SAN. However, in isolated SAN myocytes,

the MSMFDFA scale exponents were smaller compared to

both isolated atrial preparations and baseline low activity

conditions in vivo. This is indicative of the importance of

both ANS signaling and the intrinsic interactions between

cells in the intact SAN in determining the power law slope.

The smaller multi fractal index in the beating rates of isolated

atrial preparations and isolated SAN myocytes (at scale<250 s)
compared to heart rate at baseline in vivo indicates less variability

in scale exponents in the absence of ANS activity. These findings

are consistent with the effects of ANS blockade in vivo.

The asymmetric multi-fractal spectrum of the HRV signal

with right truncation in isolated atrial preparations, isolated SAN

myocytes and in vivo following ANS blockade demonstrates that

the absence of ANS signaling causes a reduction in local HRV

fluctuations with small magnitudes. On the other hand, the

asymmetric multi-fractal spectrum of HRV after atropine

injection with left truncation suggests blocking PNS signaling

alone reduces high amplitude fluctuations in the HRV signal.

Based on our data, variability in the beating rate of SAN

myocytes was random (i.e. αq(s)< 1 for the majority of

parameter space as demonstrated in the related heat maps);

however, when the level of organization was increased in a

network of interconnected myocytes (i.e. in an isolated atrial

preparation) variability became more structured and followed

the fractal order (i.e. became non-random), which was confirmed

by having αq(s)> 1 for the majority of parameter space in the
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heat maps. While strong fractals were formed at this level of

organization the multi-fractality remained low. At the next level

of organization (i.e. the intact mouse) the ANS regulated this

high fractality and made it more robust over a wide range of

fractals while increasing multi-fractality strength. In the intact

SAN, local intracellular Ca2+ releases from the sarcoplasmic

reticulum that occur within SAN myocytes differ in spatial

distribution, frequency, amplitude and phase, which results in

a complex pattern of pacemaker cell excitation (Bychkov et al.,

2020). Consistent with this, our data indicate that variability in

beating rate of SAN myocytes is random; however, as a network

of cells comes together as an ensemble in the atrial preparation,

the complex interaction between cells leads to more structured

variability that follows the fractal order rather than randomness.

Innervation of the heart by the ANS in vivo regulates this high

fractality and leads to a robust state with a wide range of fractal

orders and randomness.

Some limitations of our study should be noted. Standard

laboratory temperatures (~22°C) could impose a cold stress on

mice that may impact HR and HRV (Axsom et al., 2020). Future

studies could investigate the impacts of temperature on

MSMFDFA and HRV. In addition, SAN function can be

affected by numerous neurotransmitters and peptides

(Macdonald et al., 2020), some of which could impact HR

and HR as assessed using MSMFDFA. Furthermore, the

intracardiac nervous system and neurotransmitters produced

within epicardial cardiac ganglia (Armour, 2007) could each

have impacts on HR and HRV. These will be important areas for

future study.

In summary, we have combined the use of multi-scale and

multi-fractal detrended fluctuation analysis to assess the

nonlinear dynamics of HRV in healthy mice. By conducting

studies in vivo (with and without ANS blockade), in isolated atrial

preparations, and in isolated SAN myocytes we were able to

assess the contribution of the ANS and intrinsic SAN function to

the complex, non-linear HRV dynamics in the ultra-low and

very-low frequency bands. Our data demonstrate that the ANS

and intrinsic SAN function each contribute to the multi-fractality

of the HRV signal in healthy mice with increasing levels of

structured variability as the level of organization increased from

isolated cells to intact mice. Applying these approaches to mice in

vivo and in isolated preparations enabled important insight into the

regulation of complex, non-linear HR dynamics. Our data

demonstrate the importance of variability in MSMFDFA scale

exponents (in addition to HRV itself) for the maintenance of a

healthy cardiovascular system. These analyses and approaches

advance our understanding of the basis for HRV in the very-low

and ultra-low frequency ranges in healthy mice and establishes an

effective approach for assessing these properties across multiple scales,

which is essential for a complex signal such as HR. As HR regulation

shows trans-species self-similarity (Tagirova Sirenko et al., 2021) the

findings and approaches identified in the present study could be

applied and compared with future studies in humans. Future studies

will also be able to apply MSMFDFA analysis to mouse models of

disease or aging in order to better understand the roles of theANS and

intrinsic SAN function in nonlinear HRV dynamics in the ultra-low

and very-low frequency bands in these conditions.
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